约分教学反思

时间:2024-07-14 11:52:27
约分教学反思15篇

约分教学反思15篇

身为一名人民教师,我们需要很强的课堂教学能力,写教学反思能总结教学过程中的很多讲课技巧,来参考自己需要的教学反思吧!以下是小编收集整理的约分教学反思,希望能够帮助到大家。

约分教学反思1

约分是在学生已经掌握了分数的基本性质,学习了求最大公因数的方法的基础上学习的。教学目标要求学生认识约分的含义,掌握约分的方法,能正确进行约分。

课开始我要求学生找出四个与老师说的分数相等的分数,使得学生在愉快的氛围中开始学习,调动学生的学习热情,激发学生的求知欲。使学生乐学、好学,较好地培养学生对数学学习的情感。

考虑学生已有的知识基础——分数基本性质和最大公因数的求法。通过要求学生找出四个与老师说的分数相等、分子分母都比较小的分数,合理地迁移知识,较好地帮助学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。

为学生提供充分探究和发现的时间与空间,从约分含义的理解到约分方法的学习,都立足于培养学生的学习能力、教会学生学习方法,相信学生的潜能,通过找四个分数找出相等的关系这一活动,引发学生思考,发现几个分子分母不同的'分数相等;用学过的知识解释这些分数相等的原因引导学生观察、理解约分的含义:同原分数相等,分子分母都比较小的分数;通过小组合作探究约分的方法为学生搭建了实践探究的平台,使学生在交流中碰撞不同的约分方法,最终达成共同的认识。

练习中体现了清晰的层次性,寓教于乐,使学生对约分的认识得以不断加深。

约分教学反思2

《约分》本节课的内容比较简单:1.理解约分的意义,并学会用分数的基本性质进行约分。2.理解最简分数的意义,能判断一个分数是否为最简分数,能把一个分数化简成最简分数。都是比较注重计算和方法的内容,如果干巴巴地讲,学生会感觉比较枯燥,如何把约分讲的有意思一点,学生愿意学一点,是我需要考虑的问题,因为学生只有愿意听了,才能去学习。

我刚开始的思考是,为什么要学约分,约分的价值是什么?看看课本,发现练习十六的第一题给了我思路,于是采纳了优教上的一个导入:你能在1分钟之内涂出这个正方形的吗?加入时间限制,做一个挑战,激发学生的兴趣。果然,学生的参与度有了提高。接下来的教学也更顺畅了。

在约分这一节,学生大部分都能掌握的'很好,但在作业的完成上出现了问题。先约分再比较各组分数的大小,学生约分后比较的不是原数的大小而是约分后数的大小,关于这个问题我进行了反思,是不是因为老师没有讲到,提到,所以学生出错率才比较高。相信如果课堂上讲过这个问题,有很多学生能够避免,但是老师能做到所有题型都讲到吗?所有的易错点提前跟学生讲一遍吗?再者有必要这样做吗?我认为,应该给学生犯错的机会,给学生独立思考的机会,给学生独立判断的机会,不要事事想到学生前面,提前把易错点、难点等都告诉学生,这样的知识都是浮于表面的,要给学生充分的犯错机会,但一定要做好订正工作。

约分教学反思3

反思《约分》这节课,我觉得我对这节课不够重视,以为学过分数的基本性质和公因数,在教学时出示一个例子引导学生完成,使学生浅显的知道什么约分,让学生把什么是最简分数读了两遍,就让学生开始练习了。没有让学生亲历探索的过程。故而,在后面的练习中,很多学生找分数的分子和分母的公因数以及最大公因数的速度特别慢,还有的同学约分的结果不是最简分数。本以为相当简单的问题,可是我又用两节课时间去巩固练习,效果还是不太好。因此在计算分数加减法时暴露出来的问题就更严重了。

学生要理解掌握概念,必须要参与、经历知识的探索过程。向其他老师请教后,我再次思考了《约分》这节课的教法,特别是最简分数概念的揭示。

约分是分数基本性质的直接应用,为了使学生对最简分数的概念有充分的感知基础,可以写几组分数大小相等的分数:如9/12、3/4;3/6、10/20;让学生再说出几个与它们大小相等的分数,通过学生写分数、说理由自然地复习了分数的基本性质。

“在这些大小相等的分数中,你觉得哪个分数最特殊?为什么?”学生找出其中最简的那个分数最特殊,并说说特殊的原因:因为它们的分子分母已经不能再缩小了!“象3/4、1/2这样的分数还有吗?”引导学生不断的说,老师不断的写,从直接说一个分数,到说分子分母是连续自然数就可以、分子是1分母是非0非1的自然数,越来越归纳,越来越接近实质……说着说着,终于学生自己就会发现:只要分子分母的公因数只有1,这个分数就是最简分数!

无疑,让学生在看似不经意的'写数中悟出概念,那种成功的快乐感,那种对最简分数概念的深刻理解,是接受式教学所无法企及的。

看来许多理念对于我还是书本上的,我应该有意识的改一改自己身上一些与理念不适应的教学行为——哪怕这些行为以前是“负责任”的标志。在教学中引导学生参与到探索知识的发生发展过程之中,突破以往数学学习单一,被动的方式,关注学生的实践活动,“通过自己的活动”获得情感、能力、智力的全面发展。

约分教学反思4

一.教学设计学科名称:北师大版五年级数学上册《约分》

二.所在班级情况,学生特点分析:

我校地处城郊,所带班级学生共25人,学生的思维比较活跃,比较善于提出数学问题,能在小组合作学习中主动探究知识。在学习约分之前,学生已经探索了分数的基本性质,学习了求最大公因数的方法,这些知识的掌握都为约分方法的学习提供了认知基础。在此基础上,学生可以更好地认识约分的含义,并掌握多种约分的方法。

三.教学内容分析:

根据教材的安排,本课时设计了这样3个层面的活动来帮助学生理解约分的含义,掌握约分的方法。首先是活动一,找相等分数的活动。学生通过游戏找出相等的分数,使本课得以从愉快中开始,调动学生的学习热情,激发学生的求知欲。活动二,用学过的知识解释这些分数相等的原因,目的是更好地帮助学生理解约分的概念,把握“最简分数”的含义。而最后的活动可以说是开放性的多项思维活动,培养学生的求异思维,更好地掌握约分的不同方法。

四.教学目标:

1、经历知识的形成过程,理解约分的含义。

2、探索并掌握约分的方法,能正确地进行约分。

3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

五.教学难点分析:

教学重点:理解最简分数及约分的意义和方法。

教学难点:掌握约分的方法 。

六.教学课时:一课时

七.教学过程

(一) 创境激趣

(媒体演示并配音:话说猪八戒跟着猴哥,通过分西瓜了解了分数的神奇。今天八戒途径蛋糕店,了不得,这里的蛋糕真是香飘千里。毫不犹豫,八戒买下一个大蛋糕。不行,美味不可独享,怎么也得给师傅留一块。想呀,想呀,八戒想 ……此处隐藏4882个字……在实际运用时的确掌握不够理想。

经过反思,《约分》这节课有几个方面值得注意:

1.约分的概念是把一个分数化成和他相等,但分子和分母都比较小的分数,叫做约分。 从约分的概念看,约分的结果不一定是最简分数,只是比分子和分母比原来分数的小就行了,这样学生在做题时容易产生误解,只要数约小了,约分就结束了,因此结果也不是最简的.。在此,我跟学生强调虽然约分的概念是没要求要约到最简,但是我们所有约分的题我们都要求要约到最简,这样统一要求,学生就清楚了。

2.学生知道老师要求约分的结果要最简,但是结果不是最简时有的学生判断不出来,因此也出错,如2/18,22/14等。还有的分数学生判断不出是否是最简分数,特别是分子或分母是一个较大的质数时,学生误以为是最简分数,如17/34,19/57等。我跟学生强调碰到分子或分母是质数时,就验证分母或分子是不是这个质数的倍数,如果是那么这个分数就不是最简,如果不是倍数关系,那这个分数就是最简的。

同时还补充讲解了一些约分的技巧,如:整十整百数先消零在化简;分子分母都是偶数时先用2去除;倍数关系时用分子去除等等。

约分教学反思11

约分是分数基本性质的直接应用。为了使学生对最简分数的概念有充分的感知基础,我写了几组分数大小相等的分数:如9/12、3/4;3/6、10/20;让学生再说出几个与它们大小相等的分数,通过学生写分数、说理由自然地复习了分数的基本性质。

“在这些大小相等的分数中,你觉得哪个分数最特殊?为什么?”学生都直觉得找出其中最简的那个分数最特殊,因为它们的分子分母已经不能再缩小了!“象3/4、1/2这样的分数还有吗?”引导学生不断的说,老师不断的写,从直接说一个分数,到说分子分母是连续自然数就可以、分子是1分母是非0非1的`自然数,孩子们的回答显然越来越归纳,越来越接近实质……说着说着,

终于孩子们自己兴奋的发现:只要分子分母是互质数,这个分数就是最简分数!无疑,让学生在看似不经意的写数中悟出概念,那种成功的快乐感,那种对最简分数概念的深刻理解,是接受式教学所无法企及的。

约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求几个数的公约数,最大公约数,判断互质数,除法口算等旧知识。

约分教学反思12

约分的学习比较难,主要因为学习需要首先掌握公因数、最大公因数、分数的基本性质,学习好约分之后也能为之后的分数加减法的结果处理打好基础。所以在本课程的学习中,我把重点放在了先期知识的复习与巩固,所以在课程的开始先从小游戏涂卡片,就是让学生给圆形卡片涂色,一分钟看能涂多少,最先完成的.同学上台分享作品并告诉大家涂色部分占圆形的比例,并解释为什么,这氧复习了分数的基本性质之后,在开始约分的学习。

约分的学习先从定义来看“把一个分数的分子和分母同时除以公因数,分数的值不变,这个过程叫约分”,这个定义同学难以理解,单纯的数字与定义过于抽象,我决定从生活出发,告诉学生约分就是把分子分母共同拥有的公因数去掉的过程,去掉公因数分数的值是不变的.练习题,我发现少部分同学能约分到最简分数,但是大部分同学还会保留一两个公因数,怎么样能判断我们约分已经约到最简分数了呢?大家想想,可以互相讨论以下。陆陆续续大家也都发现了,那就是分子分母公因数只剩下1的时候就是最简分数了。比如分子是1或者分子分母相邻数等等。

在教学中利用好深度学习的方法,结合生活,找到与学生的融汇点,顺利切入主题,再让学生自己发掘知识,活跃课堂气氛。

约分教学反思13

我先出示几组数:18和15、6和9、12和18、14和42 、42和50,让学生找出每组数的最大公约数。一边学生说,一边我把最大公约数记录在每组数的上方。完成后,我让学生把每组的两个数分别除以它们的最大公约数,接着让学生观察所得的两个数有什么关系。当学生发现它们最大公因数只有1时,我接着问,你能用着两个数分别作分子、分母,然后得到一个分数吗?这些分数有什么共同的特征呢?你能给这样的分数取个名字吗?学生取了“最简分数”、“简单分数”等名称后我给出了正规的`名称“最简分数”(让学生给分数取名字并不是为了追求课堂的虚假“繁荣”,而是通过这一过程加深学生对最简分数的本质属性的认识)。接着教师引导学生观察上面8个最简分数,他们自然地认识到最简分数既可以是真分数,也可以是假分数,这样更进一步地丰富了学生对最简分数外延的认识。那么,一个不是最简分数的分数能不能化成最简分数?如果能,又怎样把它化成最简分数呢?接着就转入约分环节的教学。

以上的教学设计,除了找两个数的最大公约数是预设,其它的都是随机生成成而得,然而就是这样的灵活调整,令我这堂课生机盎然,教学线条流畅自然。

约分教学反思14

本节课主要是让学生理解约分和最简分数的意义,掌握约分的方法,难点在于判断约分后的分数是否是最简分数,事实证明学生在实际运用时的确掌握不够理想。经过反思,这节课值得关注以下几个方面:

反思自己在课堂教学时,只是通过举几个简单的例子来让学生理解最简分数,让学生自己发现最简分数的`特别之处是不能再缩小了,然后让学生自己说几个最简分数,不经意间加深对最简分数的理解,以及在这过程中感受到的成功的快乐感是接受式教学所无法企及的。

在这个约分的过程中涉及到找公因数、最大公因数以及分数的基本性质等相关知识,要求,将这些知识进行综合的运用,才能很好的掌握约分的方法。学生出现约不完的情况实际上是因为他们找不到最大公因数,不能判断两个数是不是还有除了1以外的公因数,是不是互质。只有当学生能很快找到最大公因数,约分就变得简单快捷。因此,在教学中适当补充一些判别2、5、3的倍数练习,为学生学习约分提供必要的扎实基础。

强调一定要找准公因数,并且化到最简分数。而学生一下子要发现最简分数的特征,是比较困难的,教师要做的就是给他们足够的时间和空间,让学生积极参与数学学习活动,促使他们的思维处于积极的良好状态,在合作中共同探究学习。

约分教学反思15

约分是分数基本性质的直接应用.为了使学生对最简分数的概念有充分的感知基础,我写了几组分数大小相等的分数:如9/12、3/4;3/6、10/20;让学生再说出几个与它们大小相等的分数,通过学生写分数、说理由自然地复习了分数的基本性质。

“在这些大小相等的分数中,你觉得哪个分数最特殊?为什么?”学生都直觉得找出其中最简的那个分数最特殊,因为它们的分子分母已经不能再缩小了!“象3/4、1/2这样的分数还有吗?”引导学生不断的说,老师不断的写,从直接说一个分数,到说分子分母是连续自然数就可以、分子是1分母是非0非1的自然数,孩子们的回答显然越来越归纳,越来越接近实质……说着说着,终于孩子们自己兴奋的发现:只要分子分母是互质数,这个分数就是最简分数!

无疑,让学生在看似不经意的'写数中悟出概念,那种成功的快乐感,那种对最简分数概念的深刻理解,是接受式教学所无法企及的。

《约分教学反思15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式